3.4.88 \(\int \frac {1}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx\) [388]

Optimal. Leaf size=140 \[ \frac {\cos (e+f x)}{4 f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {\cos (e+f x)}{4 c f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {\tanh ^{-1}(\sin (e+f x)) \cos (e+f x)}{4 c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

1/4*cos(f*x+e)/f/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2)+1/4*cos(f*x+e)/c/f/(c-c*sin(f*x+e))^(3/2)/(a+a*
sin(f*x+e))^(1/2)+1/4*arctanh(sin(f*x+e))*cos(f*x+e)/c^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2822, 2820, 3855} \begin {gather*} \frac {\cos (e+f x) \tanh ^{-1}(\sin (e+f x))}{4 c^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x)}{4 c f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}+\frac {\cos (e+f x)}{4 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(5/2)),x]

[Out]

Cos[e + f*x]/(4*f*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(5/2)) + Cos[e + f*x]/(4*c*f*Sqrt[a + a*Sin[e
+ f*x]]*(c - c*Sin[e + f*x])^(3/2)) + (ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(4*c^2*f*Sqrt[a + a*Sin[e + f*x]]*S
qrt[c - c*Sin[e + f*x]])

Rule 2820

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Di
st[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b
, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2822

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Dist[(m + n + 1)/(a*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m
, 1] ||  !SumSimplerQ[n, 1])

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx &=\frac {\cos (e+f x)}{4 f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {\int \frac {1}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx}{2 c}\\ &=\frac {\cos (e+f x)}{4 f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {\cos (e+f x)}{4 c f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {\int \frac {1}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{4 c^2}\\ &=\frac {\cos (e+f x)}{4 f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {\cos (e+f x)}{4 c f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {\cos (e+f x) \int \sec (e+f x) \, dx}{4 c^2 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {\cos (e+f x)}{4 f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {\cos (e+f x)}{4 c f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {\tanh ^{-1}(\sin (e+f x)) \cos (e+f x)}{4 c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.40, size = 224, normalized size = 1.60 \begin {gather*} \frac {\cos (e+f x) \left (4-3 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+\cos (2 (e+f x)) \left (\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )+3 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+\left (-2+4 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-4 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin (e+f x)\right )}{8 c^2 f (-1+\sin (e+f x))^2 \sqrt {a (1+\sin (e+f x))} \sqrt {c-c \sin (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(5/2)),x]

[Out]

(Cos[e + f*x]*(4 - 3*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] + Cos[2*(e + f*x)]*(Log[Cos[(e + f*x)/2] - Sin[(
e + f*x)/2]] - Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]) + 3*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]] + (-2 +
4*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] - 4*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]])*Sin[e + f*x]))/(8*c^2
*f*(-1 + Sin[e + f*x])^2*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(248\) vs. \(2(122)=244\).
time = 10.46, size = 249, normalized size = 1.78

method result size
default \(\frac {\left (\ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \left (\cos ^{2}\left (f x +e \right )\right )-\ln \left (\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \left (\cos ^{2}\left (f x +e \right )\right )+2 \left (\cos ^{2}\left (f x +e \right )\right )+2 \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \sin \left (f x +e \right )-2 \ln \left (\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \sin \left (f x +e \right )+3 \sin \left (f x +e \right )-2 \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+2 \ln \left (\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-2\right ) \cos \left (f x +e \right )}{4 f \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {5}{2}}}\) \(249\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/4/f*(ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*cos(f*x+e)^2-ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*cos(f*
x+e)^2+2*cos(f*x+e)^2+2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*sin(f*x+e)-2*ln((1-cos(f*x+e)+sin(f*x+e))/s
in(f*x+e))*sin(f*x+e)+3*sin(f*x+e)-2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+2*ln((1-cos(f*x+e)+sin(f*x+e))
/sin(f*x+e))-2)*cos(f*x+e)/(a*(1+sin(f*x+e)))^(1/2)/(-c*(sin(f*x+e)-1))^(5/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*sin(f*x + e) + a)*(-c*sin(f*x + e) + c)^(5/2)), x)

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 408, normalized size = 2.91 \begin {gather*} \left [\frac {{\left (\cos \left (f x + e\right )^{3} + 2 \, \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right )\right )} \sqrt {a c} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right ) + 2 \, \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (\sin \left (f x + e\right ) - 2\right )}}{8 \, {\left (a c^{3} f \cos \left (f x + e\right )^{3} + 2 \, a c^{3} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, a c^{3} f \cos \left (f x + e\right )\right )}}, -\frac {{\left (\cos \left (f x + e\right )^{3} + 2 \, \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right )\right )} \sqrt {-a c} \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a c \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) - \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (\sin \left (f x + e\right ) - 2\right )}}{4 \, {\left (a c^{3} f \cos \left (f x + e\right )^{3} + 2 \, a c^{3} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, a c^{3} f \cos \left (f x + e\right )\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

[1/8*((cos(f*x + e)^3 + 2*cos(f*x + e)*sin(f*x + e) - 2*cos(f*x + e))*sqrt(a*c)*log(-(a*c*cos(f*x + e)^3 - 2*a
*c*cos(f*x + e) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e))/cos(f*x + e)^3)
 + 2*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*(sin(f*x + e) - 2))/(a*c^3*f*cos(f*x + e)^3 + 2*a*c^3*
f*cos(f*x + e)*sin(f*x + e) - 2*a*c^3*f*cos(f*x + e)), -1/4*((cos(f*x + e)^3 + 2*cos(f*x + e)*sin(f*x + e) - 2
*cos(f*x + e))*sqrt(-a*c)*arctan(sqrt(-a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a*c*cos(f*x +
e)*sin(f*x + e))) - sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*(sin(f*x + e) - 2))/(a*c^3*f*cos(f*x +
e)^3 + 2*a*c^3*f*cos(f*x + e)*sin(f*x + e) - 2*a*c^3*f*cos(f*x + e))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(5/2),x)

[Out]

Integral(1/(sqrt(a*(sin(e + f*x) + 1))*(-c*(sin(e + f*x) - 1))**(5/2)), x)

________________________________________________________________________________________

Giac [A]
time = 0.53, size = 197, normalized size = 1.41 \begin {gather*} -\frac {\sqrt {c} {\left (\frac {2 \, \log \left (-256 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 256\right )}{\sqrt {a} c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {4 \, \log \left ({\left | \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right )}{\sqrt {a} c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1}{\sqrt {a} c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4}}\right )}}{16 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

-1/16*sqrt(c)*(2*log(-256*sin(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 256)/(sqrt(a)*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2
*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - 4*log(abs(sin(-1/4*pi + 1/2*f*x + 1/2*e)))/(sqrt(a)*c^3*sgn(cos(-1
/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + (2*sin(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 1)/(sqr
t(a)*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e
)^4))/f

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {a+a\,\sin \left (e+f\,x\right )}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(5/2)),x)

[Out]

int(1/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(5/2)), x)

________________________________________________________________________________________